欧盟电池法规生效:2027 年起动力电池入欧需持“数字护照”
欧盟电池法规生效:2027 年起动力电池入欧需持“数字护照”
欧盟电池法规生效:2027 年起动力电池入欧需持“数字护照”
点击搜索

欧盟电池法规生效:2027 年起动力电池入欧需持“数字护照”

时间: 2024-11-13 来源:bb平台体育app-安防监测

  2023年8月17日,欧盟电池与废旧电池法规(EU)2023/1542正式生效,并于2024年2月18日起开始实施。法规旨在促进电池全生命周期的可持续性,并对可再生材料的回收提出了严格要求。

  该法规中引人注目的一点,是自 2027 年起,动力电池出口到欧洲需要持有符合标准要求的“数字护照”。法规内容显示,“数字护照”用以记录电池的制造商、材料成分、技术规格、碳足迹和供应链等信息。

  此外,《欧盟电池和废电池法规》(以下简称《电池法规》)将产品分为汽车电池、电动汽车电池、轻型交通工具电池、工业电池、便携式电池,对电池整个生命周期的各阶段提出了有关要求,涵盖原材料生产加工、电池使用的过程及废旧电池回收。

  与《欧洲绿色协议》的循环目标一致,《电池法规》是欧洲第一部采用全周期方法的立法,其中涵盖了采购、制造、使用和回收。

  今年 1 月 18 日在瑞士举行的达沃斯世界经济论坛上,全球电池联盟(GBA)首次发布了“数字护照”概念验证成果。据称,“数字护照”是促进快速扩大可持续、循环和负责任的电池价值链的关键,由全球电池联盟(GBA)的成员历时三年制定,该护照的最终目标是为用户更好的提供电池可持续性表现的质量保证。

  《电池法规》适用于以下所有类型的电池,并根据电池质量及使用对象分为以下五类:

  指密封的、质量小于或等于5kg的,非设计专供工业用途的,既不是电动汽车电池也不是轻型交通工具电池也不是SLI电池。

  指设计为启动、照明或点火提供电力的任何电池,也可用于车辆、其他运输工具或机械的辅助或备用目的。

  指任何密封的、质量小于或等于25kg的,旨在为轮式车辆提供牵引力的电池,包括法规(EU) No 168/2013定义的L类车辆,但不包括电动汽车电池.

  指设计为法规(EU) 2018/858 定义的M、N和O类混合动力或电动汽车提供牵引力的任何电池;或质量超过25kg的,设计为法规(EU) No 168/2013定义的L 类车辆提供牵引力的任何电池;

  指任何专门为工业用途设计的电池,或任何经过准备再利用后用于工业用途的电池,以及质量超过5kg的,除LMT电池、电动汽车电池和SLI电池外的其他电池。

  《电池法规》对包括轻型交通工具电池(LMT)、容量大于2 kWh的可充电工业电池、电动汽车电池提出碳足迹要求,首先要求碳足迹信息的披露,接着进行分级,最后设定碳足迹强制性限值。

  《电池法规》对电动汽车电池、容量大于2kwh工业电池(除外存储)、SLI电池、LMT电池提出再生原材料要求,首先要求在随附文件中披露再生原材料含量,然后设定再生原材料限值,具体实际的要求如下:

  《电池法规》要求便携式电池、内部存储及容量大于2kwh的可充电工业电池、电动汽车电池、LMT电池满足电化学性能参数标准或者需要在随附文件中包含相关参数,具体实际的要求如下:

  固定式电池储能系统(Stationary battery energy storage systems)应在随附的技术文档中说明其在正常运行和使用期间是安全的,并包括其通过新法规草案附件V所列11项安全参数的证据。

  电动汽车电池、固定时电池储能系统和LMT电池应包括一个用于决定电池健康和预期寿命状态(欧盟电池法案附件VII中所列)数据的电池管理系统。

  法规生效之日起36个月后,不同电池需附有含有不同信息的标签,包括以下2点内容:

  基础信息:所有电池附有含电池基本信息的标签,包括制造商信息,电池类型,化学组成,除铅、镉、汞以外的其他有害于人体健康的物质,关键原材料等10项内容;

  容量信息:可充电便携式电池,LMT电池和SLI电池应在标签上标明容量信息,且不可充电的便携式电池还应标明最小平均维持的时间且标有“不可充电”。

  所有电池含镉超过0.002%或含铅超过0.004%的电池应在分开收集符号下方标注超限物质的化学符号;所有电池在投放市场前加贴CE标记。

  法规生效之日起42个月后电池应附有二维码,不同电池对应不同信息权限的访问:

  其它电池:标签、标记、合格声明、尽职调查报告、关于预防和管理废电池的信息;

  SLI电池:从废物中回收的钴、铅、锂或镍以及在电池活性物质中存在的数量。

  法规生效之日起42个月后,投放市场或投入到正常的使用中的LMT电池、容量大于2kwh的工业电池和电动汽车电池应具有电子记录,即数字护照。

  电池法规第11条便携式电池和LMT电池的可拆卸性与可更换性中提到“将包含便携式电池的产品投放市场的任何自然人或法人应确保最终用户在产品的常规使用的寿命期间可以每时每刻拆卸和更换这些电池”。法规将“便携式电池”定义为“密封的、重量不超过5公斤、非专门为工业用途设计的电池,既不是电动汽车电池、LMT电池,也不是SLI电池”,其范围涵盖笔记本电脑、手机、游戏机等多种类型的电池。这在某种程度上预示着目前欧盟市面上大部分手机和平板电脑的设计方式将迎来巨大转变。容易打开的手机需要用垫圈和连接器,这使得手机更厚更不耐用,更难防水或防尘。苹果、三星、小米、OPPO等智能手机制造商都将产品出口欧洲,可能会被迫增加成本来改变手机设计,尤其是可折叠手机,改变设计使电池更加容易更换可能更加困难。

  以苹果为例:苹果旗下的大多数产品, iPhone、iPad、MacBook、Apple Watch,甚至 Apple Vision Pro都包括在法规影响区域之内。MacBook在2009年以后就变为了内置电池,电池实际上粘在MacBook的框架中,更紧凑安全,并可以使电脑越来越薄,但这样的电池用户是无法自己拆卸的。Apple Watch 也许可以争取获得豁免,因为法规中有规定“专门设计用于主要在经常受到水溅、水流或水浸的环境中运行,并且可清洗或可冲洗的设备”可以只能由独立专业人员拆卸和更换。而对于 iPhone 和 iPad 而言,如需满足规定则其设备的厚度和重量都会发生变化,防水性能也可能受到影响。

  电池法规还将对Switch、Steam Deck等游戏机产品带来很大影响。虽然电池法规仅适用于欧盟国家,但正式生效后很可能影响全球的游戏手持设备,因为任天堂等公司大概率会出于成本考虑统一更换全球的Switch和Steam Deck后续产品。

  近年来,新能源汽车动力电池系统一直在致力于提高系统集成度,由传统的“电芯-模组-电池系统“(CTM)集成方式,向电池无模组技术(CTP)、电池车身一体化(CTB)和电池底盘一体化(CTC)方向发展。

  电池无模组技术(CTP)直接将电芯集成为电池包,再把电池包作为整车结构的一部分集成到车身底板上,这样可以减少不必要的材料和重量,使能量密度提升10%-15%,体积利用率提升15%-20%。电池车身一体化(CTB)则在CTP的基础上优化电池包上盖结构,使电池包上盖替代地板,实现电池包与车身的一体化集成。电池底盘一体化(CTC)则是一体化电动智能底盘技术,电芯在车体边梁与横梁之间进行布局。这些技术大大提升了电池系统的集成程度,却给电池的再回收利用带来挑战。

  电池无模组设计(CTP)通常会使用结构粘合剂或者封装泡沫,这样使得电池组的拆卸变得非常困难,如果发生故障则需要完全更换电池组。与电池无模组设计(CTP)相比,电池车身一体化(CTB)和电池底盘一体化(CTC)设计在后期回收时由于需要从车上拆除作为车辆结构的电池组,其拆卸成本会更高。有一种回收方法是压碎电池并过筛,将较大颗粒与较小颗粒分离,小颗粒中有高价值的电极材料;然后使用湿法冶金进一步处理黑色物质,以电池级金属盐的形式回收锂、钴、镍等。理想情况下这种回收过程从电芯层级进行,以便所得到的黑色金属具有更高比例的关键金属。也有厂商选择直接把电池组研磨碾碎,这样虽然在前期可以用更低的设计和制造成本去制造电池,但后期的回收提取会比较困难,导致锂、钴、镍等金属回收效率不高。

  除了拆解回收以外,电动汽车电池还可进行梯次利用。梯次利用主要针对电池容量降低至80%以下的电池,其典型应用为储能领域,如风光储能、削峰填谷、备用电源等。大多数梯次利用电池厂商会选择在电池模组层级集成电池,以避免需要将其分解成电芯的复杂过程。但如果需要拆卸到电芯级别,以挑选性能最佳的电芯进行再利用,则电池无模组设计(CTP)比其它两种系统设计更具优势。

  如上文所述,欧盟电池法规对电池活性材料中所含回收材料的百分比,以及对废旧电池可再生材料的回收水平都有很高的要求。当目前市面上的电动汽车电池组达到使用寿命时,回收这些系统高度集成的电池组将会带来较大的工作量。较有潜力的一个突破方向是设计出不伤害电芯的溶剂、粘合剂和密封剂,降低电池组拆解的难度。

  法规对电池活性材料中所含可再生材料(钴、锂、镍、铅)的比例要求很高,且生产者(制造商、进口商、分销商)在电池首次投入市场的成员国要负责废旧电池的收集。为了满足最低回收含量的要求,制造商会大力加强对有价值废弃物的控制力度,未来电池回收数字化也许会成为一个趋势,生产者可对电池产品状态进行定期监测及管理,帮助其更好地做出决策,甚至延伸企业服务链。如果废料供应不足,一些厂家将被迫采购额外的回收材料。由于市面上回收材料有限,大量的需求可能导致价格上涨。如果满足不了法规对回收材料的最低要求,我国电池企业将面临产品无法出海的风险。同时,履行生产者延伸责任(EPR),建立废旧电池的回收收集系统对于制造商而言也是一项挑战,尤其是新进入行业的厂商更是面临很大的开发成本。法规中提到生产者可以将收集义务外包给生产者责任组织(PRO),也就是专业的废弃产品回收、处理、循环利用的团体,降低生产企业回收和收集废弃电池的难度及成本,预计未来废弃电池收集处理的领域将会有大量需求。此外,法规还要求电池需满足碳足迹的相关要求,要依照规定的计算方法提供碳足迹报告,标明碳足迹性能等级,而且要低于规定的碳足迹最大阈值。这就要求从原材料获取及预处理(采矿等)、运输材料到电芯制造、电池组装等所有包含在系统边界之内的生命周期阶段都需要进行碳足迹核算以及节能降碳工艺优化。由于每个LMT电池、大于2kWh的工业电池,电动汽车电池都应配有数字护照,电池供应链上下游主体都需配合提供诸如碳足迹、责任采购、可再生成分比例、电池材料成分、性能及耐久性参数等信息。

  我国资源丰富,锂、钴上游资源依赖进口,中游加工产能充足,目前欧盟97%的锂,60%的钴均来自中国。于2023年3月16日出台的欧盟《关键原材料法案》直接指出欧洲地区在部分关键原材料的供应上对中国的依赖度过高,需要减轻与此类战略依赖相关的供应链风险,以增强其经济弹性。《关键原材料法案》为原材料供应链的欧盟内部产能设定了明确的基准,其中加工至少占欧盟年消费量的40%,回收至少占欧盟年消费量的15%;且欧盟在任何相关加工阶段对每种战略原材料的年消耗量,来自单一第三国的比例不超过65%;条例还提出通过创建可回收关键原材料的价值链来提高关键原材料的循环性和有效利用的措施,旨在将战略性材料留在欧洲范围内。《关键原材料法案》提出了对材料供应及回收的需求,电池法规则将其具化为对电池行业的各种法规要求,对电池收集及回收材料的种种要求推动企业完成材料相关的各种举措。(此外,虽然目前未被包含在电池法规的管控范围以内,石墨也被欧盟委员会视为战略优先事项。石墨约占电池材料的 50%,预计对石墨的需求到2050年将增长14倍。欧盟电池中使用的特定石墨大部分来自中国,而且在欧盟内部还没有开始回收)

  法规规定销售可充电工业电池和电动汽车电池的经济运营商需要对锂、钴、石墨、镍和其它化合物的供应链进行尽职调查的义务,需建立原材料供应链管理体系,并由第三方出具调查报告,保证原材料供应链的可追溯性和透明性,这些都需要电池上游材料供应商的配合。上游材料供应商将提高清洁能源的使用比例,采用创新技术降低碳排。如贵州的振华义龙新材料有限公司,打造了贵州首家正极材料“零碳工厂“,通过使用绿色电力、工业废水再利用、节能设备等方式减少碳排。此外,欧盟关键原材料法规及电池法规的发布旨在加强跨大西洋联盟,在关键原材料上降低对中国的依赖,我国材料产业在加快资源开发、提升加工产能的同时,也要积极建立全球范围内的产业链,进一步开拓市场。

  由于数字护照、碳足迹等要求,上下游企业的供应链管理、信息精确和追溯以及链条上各个环节企业的合作愈发重要,融合“生产端-应用端-回收端”的商业合作新模式将很有可能出现。集矿产、正、负极生产、电解液、铜/铝箔、材料回收,低碳服务等一系列产业链企业的新型产业园将极大的提升企业应对电池法规的能力,降低风险。

  目前电池回收商面临的一大瓶颈是很难准确评估电池剩余寿命及合适的回收价格,欧盟电池法规规定了电池的健康状况信息可以由公开渠道获得,将帮助回收商判断电池的真实状况从而做出决策。电动汽车电池是回收商面临的另一个难题,不仅拆解难度大,而且不同车型电池设计不同,没有可普适所有车型的电池拆解流水线。预计未来更利于回收和拆解的产品设计将会更受欢迎;电池回收的智能化、机械化可能会是下一步的发展方向。

  为了应对欧盟电池法规等一系列国际碳壁垒,多个电池行业龙头企业已开始行动。宁德时代规划到2025年全部电池工厂成为零碳工厂,到2035年实现全价值链碳中和,其生产的电池将全部为零碳电池。宁德时代将通过四大创新体系,在矿、大宗原材料、电池材料、电芯制造、电池系统五大关键节点实现技术降碳,完成全价值链降碳。通过广泛应用可持续发展透明度审核工具CREDIT,实现高效供应链管理。2019年10月,宁德时代在宜宾投建全球首家电池零碳工厂,总投资超过 500 亿元,项目规划 10 期,全部建成后,年产能可突破 200GWh,是一座世界级的电池制造基地。工厂通过水电能源、绿色能源管理(CFMS智慧厂房),绿色制造(废料贵金属回收),物流交通,碳交易等多种方式达成零碳目标。

  蜂巢能源于2022年在四川达州投建全绿电“源网荷储”一体化锂电零碳产业园,预计可实现年产值630亿元。亿纬锂能通过绿电采购、屋顶光伏、水光储调峰、供应链减排等方式进行降碳,预计2026年将建成超过200GWh零碳电池产能。远景动力于2022年底已实现全球业务运营碳中和,目标2028年实现全价值链的碳中和。

  上一篇:品英Pickering将在中国汽车测试及质量监控博览会演示电池管理系统测试系统及相关技术

  2022年10月动力电池月度数据发布如下。产量方面:10月,我国动力电池产量共计62.8GWh,同比增长150.1%,环比增长6.2%。其中三元电池产量24.2GWh,占总产量38.6%,同比增长163.5%,环比下降0.2%;磷酸铁锂电池产量38.6GWh,占总产量61.4%,同比增长142.6%,环比增长1 ...

  动力锂电市场集中度提高,巨头企业共享红利。2016年国内前两家企业动力锂电出货量占全国出货量的47.5%,全球前三家企业出货量逾全球出货量一半,行业整合趋势明显。预计松下、CATL、比亚迪、LG化学、三星SDI和力神成为寡头的确定性最大。下面就随汽车电子小编一起来了解一下相关内容吧。 以消费锂电起家,厚积薄发成为动力锂电巨头。2002年比亚迪成为诺基亚锂离子电池供应;2004年ATL为苹果解决锂离子电池寿命问题,并成为iPhone电池供货商;天津力神成立伊始是为飞利浦和摩托罗拉供应电池。这三家公司陪跑国际一流电子公司,积累多年生产消费锂电经验,为开展动力锂电的研发与生产提供了沃土。日本松下、韩国三星SDI和LG同样以消费

  领域 谁将成为寡头? /

  电车汇消息:2月19日晚间,亿纬锂能发布公告称,公司全资孙公司亿纬动力香港有限公司的全资子公司惠州亿纬动力电池有限公司,拟以自有及自筹资金投资建设“乘用车锂离子动力电池项目(一期)”和“xHEV电池系统项目(一期)”,投资金额分别为不超过人民币10亿元、26亿元。 公告原文如下:

  项目 /

  面对越加严重的环境污染和能源问题, 新能源汽车 发展已经呈现出势不可挡的态势。出于长远考虑各国政府都采取了行动,一方面对新能源车企大力支持,一方面对燃油车企制定更严苛的标准,迫使传统燃油车企业不得不向新能源汽车转型。而一些国家明确表明了全面禁售燃油车的时间,无疑是对传统车企下达了最后通牒。 政策的驱使、传统车企的转型、 新能源汽车 的普及,使得传统燃油车已四面楚歌,恐再无出头之日。而新能源汽车的普及也势必会带动电池行业的迅速崛起,而在各国“禁售令”正式实施后,其动力电池市场必定会被瓜分,在这场“分蛋糕”的竞争中,谁将会成为最大赢家? 釜底抽薪:扼杀于摇篮中 政策是 新能源 汽车发展的第一推动力,一些走在新能源发展前列的

  最新销售数据显示,2019 年戴姆勒的梅赛德斯奔驰和 Smart 品牌在中国首次突破 70 万辆大关,即便是处在下行阶段的中国市场,仍然是戴姆勒全球最大的单一市场,且销售数据超过紧随其后的美国和德国的销量总和。 在全球汽车业面临巨大变革的趋势下,戴姆勒的转型目标非常明确,“2022 年之前,梅赛德斯奔驰每一个车型会有一款电动车;到 2030 年,电动车型(包括纯电动和插电混合式动力的车型)将占据乘用车新车销量份额的 50%以上”,戴姆勒大中华区执行副总裁冷炎日前在 2020 中国电动汽车百人会论坛上阐述了戴姆勒的电动化规划。 “汽车行业正在经历着根本性的转型。我知道,很多人会有点着急,会觉得转型还不够快。对这些人,我想说

  中心议题: * AMS+Infineon 动力电池管理系统(BMS)解决方案 做为电动车的核心—动力电池的安全一直是电动汽车的难点与重点,谁掌握了动力电池管理技术,谁就掌握了未来电动汽车市场。本文介绍了品佳集团以Infineon高性能16位MCU XC164为平台,辅以AMS高精度、零温漂的动力电池电流检测芯AS8510的动力电池管理系统(BMS)解决方案。 一、 动力电池BMS(电池管理系统) 二、 电池管理系统主要有三个功能: 1. 实时监测电池状态。通过检测电池的外特性参数(如电压、电流、温度等),采用适当的算法,实现电池内部状态(如容量和SOC等)的估算和监控,这是电池管理系统有

  管理系统解决方案 /

  作为新能源车产业链的中游企业,宁德时代正享受着来自下游的红利。 昨天晚间,宁德时代发布了2020年成绩单。 根据财报,公司全年营收503.19亿元,同比增长9.9%,其中,动力电池系统销售为主要收入来源,收入为394.26亿元,较上年增长2.18%,依然保持着良好的增长势头。 作为国内动力电池的绝对龙头企业,宁德时代顶住了来自LG化学和松下的压力,继续稳坐全球动力电池市场第一。 随着下游车企新一轮的“造车热潮”,作为中游龙头的宁德时代将继续渗透汽车市场。 动力电池占有率不断升高,宁德时代坐收订单 当下的宁德时代有多“恐怖”? 2020年,工信部公布的新能源车型有效目录共6800余款车型,其

  SNE对于全球动力电池的数据做了一些发布,我这边通过韩文的证券公司报告做了一些整理。2021年前两月,全球动力电池装机量为25.2 GWh,同比增长一倍以上。其中2月份装机量为11.2GWh。 备注:SNE对全球BEV的量也做了分解,2月全球纯电动汽车(BEV)的销量为17.6万辆(同比增长123%),其中欧洲48,000辆(同比+ 15%),中国88,000辆(同比+ 759%),美国为31,000台(同比增长102%) 图1 全球BEV的主要销量 01、全球需求的分解数据 SNE做了一个很细致的表格,是各个分类HEV、PHEV和BEV在全球的去年1年里面的数据情况,电气化车辆在去年的12月达到了一个

  装机量概览 /

  及管理系统模块设计 (董艳艳,王万君主编)

  的液体加热循环泵电机控制策略研究_施东亮

  东芝1200V SIC SBD “TRSxxx120Hx系列” 助力工业电源设备高效

  TI BMS动力电池管理技术- Power tools, ebikes, LEVs

  2024 瑞萨电子MCU/MPU工业技术研讨会——深圳、上海站, 火热报名中

  Follow me第二季第4期来啦!与得捷一起解锁蓝牙/Wi-Fi板【Arduino Nano RP2040 Connect】超能力!

  嵌入式工程师AI挑战营(进阶):基于RV1106部署InsightFace算法,实现多人的实时人脸识别

  “为氮化镓技术树立新标杆(New Benchmark)”,一向保守的Power Integrations(PI)罕见用这么富有冲击力的标题来发表一颗新品IC170 ...

  我们专门请纳芯微技术市场经理庞家华进行了解读,庞家华深耕栅极驱动芯片多年,具有广泛的技术及行业经验。...

  摘要技术世界千变万化,人们对高效可靠电源解决方案的需求持续上升。近年来,48 V电源电压非常关注。乍看之下,48 V可能并不新颖,但它具 ...

  记者10日从昆明理工大学冶金与能源工程学院获悉,该院华一新教授团队近日在低共熔溶剂回收废旧锂离子电池领域取得重要研究进展,不仅为废旧 ...

  (2024年11月8日,上海)今日,南芯科技 宣布推出全新高效同步双向升降压充电芯片 SC8808,可支持最高 80V 的充电电压,主要面向需求持 ...

  艾迈斯欧司朗推出全新UV-C LED,提升UV-C消毒与处理解决方案效率

  ROHM开发出实现业界超低损耗和超高短路耐受能力的1200V IGBT

  DC1317A-D,使用 LT1952EGN-1 的演示板,Vin=18V 至 72V,Vout=24V at 5A 单开关同步正向控制器

  EV-ADF5904SD2Z,用于 ADF5904 4 通道、24GHz 接收器下变频器的评估板评估板

  ADP2107-BL1-EVZ,用于 ADP2107-BL1 2A 同步降压 DC 至 DC 转换器的评估板

  STK404-140 厚膜混合IC 单通道AB类音频功率放大器IC 120W典型应用

   使用 ON Semiconductor 的 LA5744TP 的参考设计

  瑞萨与尼得科携手开发创新“8合1”概念验证, 为电动汽车驱动电机提供高阶集成

  西门子精彩视频限时免费利用电子科技类产品生命周期管理 (PLM) 更快地交付更多产品

  造个车,一起驶向诗和远方!学习 TI 汽车参考设计,参加技能小测试赢好礼!

  站点相关:分立器件转换器稳压稳流数字电源驱动电源模块电池管理其他技术宽禁带半导体LED网络通信消费电子电源设计测试与保护逆变器控制器变压器电源百科电源习题与教程